Affiliation:
1. The Bruce Lyon Memorial Research Laboratory, Children's Hospital Medical Center, Oakland, Calif. 94609, U.S.A., and The Cardiovascular Research Institute, University of California Medical Center, San Francisco, Calif. 94143, U.S.A.
Abstract
1. Incubation of isolated liver cells in a medium containing bicarbonate raises malate concentrations almost sixfold compared with values obtained in a bicarbonate-free phosphate medium. The malate concentration of about 0.3mm in bicarbonate medium is of the same order as the Km for malate dehydrogenase. 2. The utilization of ethanol, glyercol and sorbitol was increased by 20–35% in bicarbonate medium. 3. Fluoromalate, a specific inhibitor of malate dehydrogenase and the malate carrier, inhibited or ethanol oxidation by 23%, glycerol uptake by 20% and sorbitol uptake by 42% in bicarbonate medium, but had a much smaller inhibitory action in phosphate medium. In consequence fluoromalate almost abolished the stimulatory effects of bicarbonate on substrate utilization. 4. Difluoro-oxaloacetate, a specific inhibitor of aspartate aminotransferase, had about one-half the inhibitory activity of fluoromalate. The two inhibitors in combination were less effective than fluoromalate by itself. 5. It is concluded that bicarbonate stimulates the utilization of reduced substrates, which are oxidized in the cytoplasmic compartment of the liver cell, by increasing the activity of rate-limiting malate dehydrogenase-dependent intercompartmental hydrogen shuttles. Both malate–oxaloacetate and malate–aspartate systems are involved in these hydrogen-translocation processes.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献