Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter

Author:

GOSWAMI Tapasree1,BHATTACHARJEE Arin2,BABAL Paul3,SEARLE Susan1,MOORE Elizabeth4,LI Ming2,BLACKWELL Jenefer M.1

Affiliation:

1. Wellcome Trust Centre for Molecular Mechanisms in Disease, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, U.K.,

2. Department of Pharmacology, University of South Alabama College of Medicine, Mobile 36688, Alabama, U.S.A.,

3. Department of Pathology, University of South Alabama College of Medicine, Mobile 36688, Alabama, U.S.A.

4. U.S.A. Cancer Centre, University of South Alabama College of Medicine, Mobile 36688, Alabama, U.S.A.

Abstract

In mammals, natural-resistance-associated macrophage protein 1 (Nramp1) regulates macrophage activation and is associated with infectious and autoimmune diseases. Nramp2 is associated with anaemia. Both belong to a highly conserved eukaryote/prokaryote protein family. We used Xenopus oocytes to demonstrate that, like Nramp2, Nramp1 is a bivalent cation (Fe2+, Zn2+ and Mn2+) transporter. Strikingly, however, where Nramp2 is a symporter of H+ and metal ions, Nramp1 is a highly pH-dependent antiporter that fluxes metal ions in either direction against a proton gradient. At pH9.0, oocytes injected with cRNA from wild-type murine Nramp1 with a glycine residue at position 169 (Nramp1G169; P = 3.22×10-6) and human NRAMP1 (P = 3.87×10-5) showed significantly enhanced uptake of radiolabelled Zn2+ compared with water-injected controls. At pH5.5, Nramp1G169 (P = 1.34×10-13) and NRAMP1 (P = 1.09×10-6) oocytes showed significant efflux of Zn2+. Zn2+ transport was abolished when the proton gradient was dissipated using carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Using pre-acidified oocytes, currents of 130±57 nA were evoked by 100µM Zn2+ at pH7.5, and 139±47 nA by 100µM Fe2+ at pH7.0, in Nramp1G169 oocytes; currents of 254±49 nA and 242±26 nA were evoked, respectively, in NRAMP1 oocytes. Steady-state currents evoked by increasing concentrations of Zn2+ were saturable, with apparent affinity constants of approx. 614nM for Nramp1G169 and approx. 562nM for NRAMP1 oocytes, and a curvilinear voltage dependence of transporter activity (i.e. the data points approximate to a curve that approaches a linear asymptote). In the present study we propose a new model for metal ion homoeostasis in macrophages. Under normal physiological conditions, Nramp2, localized to early endosomal membranes, delivers extracellularly acquired bivalent cations into the cytosol. Nramp1, localized to late endosomal/lysosomal membranes, delivers bivalent cations from the cytosol into this acidic compartment where they may directly affect antimicrobial activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3