NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound

Author:

Liu Dan12ORCID,Yang Peilang12,Gao Min12,Yu Tianyi12,Shi Yan12,Zhang Meng12,Yao Min3,Liu Yan12,Zhang Xiong12

Affiliation:

1. Department of Burns and Plastic Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. Shanghai Burns Institution, Shanghai, China

3. Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Abstract Persistent inflammatory response in the diabetic wound impairs the healing process, resulting in significant morbidity and mortality. Mounting evidence indicate that the activation of Nod-like receptor protein (NLRP) 3 inflammasome in macrophages (MΦ) contributes to the sustained inflammatory response and impaired wound healing associated with diabetes. However, the main trigger of NLRP3 inflammasome in the wounds is not known. Neutrophils, as sentinels of the innate immune system and key stimulators of MΦ, are immune cells that play the main role in the early phase of healing. Neutrophils release extracellular traps (NETs) as defense against pathogens. On the other hand, NETs induce tissue damage. NETs have been detected in the diabetic wound and implicated in the impaired healing process, but the mechanism of NETs suspend wound healing and its role in fostering inflammatory dysregulation are elusive. Here, we report that NLRP3 and NETs production are elevated in human and rat diabetic wounds. NETs overproduced in the diabetic wounds triggered NLRP3 inflammasome activation and IL-1β release in MΦ. Furthermore, NETs up-regulated NLRP3 and pro-IL-1β levels via the TLR-4/TLR-9/NF-κB signaling pathway. They also elicited the generation of reactive oxygen species, which facilitated the association between NLRP3 and thioredoxin-interacting protein, and activated the NLRP3 inflammasome. In addition, NET digestion by DNase I alleviated the activation of NLRP3 inflammasome, regulated the immune cell infiltration, and accelerated wound healing in diabetic rat model. These findings illustrate a new mechanism by which NETs contribute to the activation of NLRP3 inflammasome and sustained inflammatory response in the diabetic wound.

Publisher

Portland Press Ltd.

Subject

General Medicine

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3