Affiliation:
1. Department of Biochemistry and Agricultural Biochemistry, University College of Wales, Aberystwyth
Abstract
1. p-Hydroxy[U−14C]benzoic acid, except for loss of the carboxyl group, is effectively incorporated into the nucleus of ubiquinone and an unidentified prenylphenol by maize roots, maize shoots, french-bean leaves, french-bean cotyledons and Ochromonas danica. Plastoquinone, α-tocopherol, γ-tocopherol and α-tocopherolquinone are all unlabelled from this substrate. The high radioactivity of the prenylphenol and its behaviour in a pulse-labelling experiment with maize shoots suggested that it may be a ubiquinone precursor. 2. Members of the 2-polyprenylphenol and 6-methoxy-2-polyprenylphenol series, compounds that are known ubiquinone precursors in Rhodospirillum rubrum, could not be detected in maize tissues, but possibly they may occur as their glycosides. 3. [G−14C]Shikimic acid is incorporated into the nuclei of phylloquinone, plastoquinone, α-tocopherolquinone, γ-tocopherol, α-tocopherol and ubiquinone in maize shoots, showing that in plant tissues the nuclei of these compounds arise via the shikimic acid pathway of aromatic biosynthesis. 4. l-[U−14C]Phenylalanine and l-[U−14C]tyrosine are incorporated into plastoquinone, γ-tocopherol, α-tocopherolquinone and ubiquinone. α-Tocopherol, which is absent from shoots incubated with l-[U−14C]tyrosine, is also labelled from l-[U−14C]phenylalanine. Degradation studies showed that there is little 14C radioactivity in the terpenoid portions of the molecules and from this it is concluded that the aromatic portions of these amino acids are giving rise to the quinone and chromanol nuclei. 5. It is proposed that in maize the nucleus of ubiquinone can be formed from either phenylalanine or tyrosine by a pathway involving p-coumaric acid and p-hydroxybenzoic acid. Plastoquinone, tocopherols and tocopherolquinones are formed from tyrosine by some pathway in which the aromatic ring and C-3 of the side chain of this amino acid gives rise to the nucleus and one methyl substituent respectively of these compounds.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献