Pig kidney legumain: an asparaginyl endopeptidase with restricted specificity

Author:

DANDO Pam M.1,FORTUNATO Mara1,SMITH Lorraine1,KNIGHT C. Graham2,MCKENDRICK John E.3,BARRETT Alan J.1

Affiliation:

1. MRC Molecular Enzymology Laboratory, The Babraham Institute, Babraham, Cambridgeshire CB2 4AT, U.K.

2. Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.

3. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

Abstract

Legumain was recently discovered as a lysosomal endopeptidase in mammals [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098], having been known previously only from plants and invertebrates. It has been shown to play a key role in processing of the C fragment of tetanus toxin for presentation by the MHC class-II system [Manoury, Hewitt, Morrice, Dando, Barrett and Watts (1998) Nature (London) 396, 695-699]. We examine here the specificity of the enzyme from pig kidney by use of protein, oligopeptide and synthetic arylamide substrates, all determinations being made at pH 5.8. In proteins, only about one in ten of the asparaginyl bonds were hydrolysed, and these were mostly predicted to be located at turns on the protein surface. Bonds that were not cleaved in tetanus toxin were cleaved when presented in oligopeptides, sometimes faster than an equivalent oligopeptide based on a bond that was cleaved in the protein. Legumain cleaved the bait region of rat α1-macroglobulin and was ‘trapped’ by the macroglobulin, as most other endopeptidases are, but did not interact with human α2-macroglobulin, which contains no asparagine residue in its bait region. Glycosylation of asparagine totally prevented hydrolysis by legumain. Specificity for arylamide substrates was evaluated with reference to benzyloxycarbonyl-Ala-Ala-Asn-aminomethylcoumarin, and the preference for the P3-position amino acid was Ala > Tyr(tertiary butyl) > Val > Pro > Phe = Tyr > Leu = Gly. There was no hydrolysis of substrate analogues containing mono- or di-N-methylasparagines, L-2-amino-3-ureidopropionic acid or citrulline in the P1 position. We conclude that mammalian legumain appears to be totally restricted to the hydrolysis of asparaginyl bonds in substrates of all kinds. There seem to be no strong preferences for particular amino acids in other subsites, and yet there are still unidentified factors that prevent hydrolysis of many asparaginyl bonds in proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3