Molecular modelling of the nucleotide-binding domain of Wilson's disease protein: location of the ATP-binding site, domain dynamics and potential effects of the major disease mutations

Author:

EFREMOV Roman G.1,KOSINSKY Yuri A.1,NOLDE Dmitry E.1,TSIVKOVSKII Ruslan2,ARSENIEV Alexander S.1,LUTSENKO Svetlana2

Affiliation:

1. M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow V-437, 117997 GSP, Russia

2. Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, U.S.A.

Abstract

WNDP (Wilson's disease protein) is a copper-transporting ATPase that plays an essential role in human physiology. Mutations in WNDP result in copper accumulation in tissues and cause a severe hepato-neurological disorder known as Wilson's disease. Several mutations were surmised to affect the nucleotide binding and hydrolysis by WNDP; however, how the nucleotides bind to normal and mutated WNDP remains unknown. To aid such studies, we performed the molecular modelling of the spatial structure and dynamics of the ATP-binding domain of WNDP and its interactions with ATP. The three-dimensional models of this domain in two conformations were built using the X-ray structures of the Ca2+-ATPase in the E1 and E2 states. To study the functional aspects of the models, they were subjected to long-term molecular dynamics simulations in an explicit solvent; similar calculations were performed for the ATP-binding domain of Ca2+-ATPase. In both cases, we found large-scale motions that lead to significant changes of distances between several functionally important residues. The ATP docking revealed two possible modes of ATP binding: via adenosine buried in the cleft near residues H1069, R1151 and D1164, and via phosphate moiety ‘anchored’ by H-bonds with residues in the vicinity of catalytic D1027. Furthermore, interaction of ATP with both sites occurs if they are spatially close to each other. This may be achieved after relative domain motions of the ‘closure’ type observed in molecular dynamics simulations. The results provide a framework for analysis of disease mutations and for future mutagenesis studies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference33 articles.

1. Human copper-transporting ATPase ATP7B (the Wilson's disease protein): biochemical properties and regulation;Lutsenko;J. Bioenerg. Biomembr.,2002

2. Wilson disease;Gitlin;Gastroenterology,2003

3. Diagnosis and phenotypic classification of Wilson disease;Ferenci;Liver Int.,2003

4. Identification of three novel mutations and a high frequency of the Arg778Leu mutation in Korean patients with Wilson disease;Kim;Hum. Mutat.,1998

5. Mutation analysis in patients of Mediterranean descent with Wilson disease: identification of 19 novel mutations;Loudianos;J. Med. Genet.,1999

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3