A re-evaluation of some basic structural and functional properties of Pseudomonas cytochrome oxidase

Author:

Silverstrini Maria Chiara1,Colosimo Alfredo1,Brunori Maurizio1,Walsh Terence A.2,Barber Donald2,Greenwood Colin2

Affiliation:

1. Istituti di Chimica e Biochimica della Facolta di Medicina, Centro di Biologica Molecolare del C.N.R., Università di Roma, 00185 Roma, Italy

2. School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

Abstract

Determinations of iron content and dry-weight measurements on samples of Pseudomonas cytochrome oxidase were coupled with sodium dodecyl sulphate/polyacrylamide-gel-electrophoresis studies of both the native protein and covalently cross-linked oligomers in order to estimate the enzyme's molecular weight and spectral absorption coefficients. A value of εox.410=282×103 litre·mol−1·cm−1 was calculated for a dimeric protein molecule having a total molecular weight of 122000 (based on iron analysis). Steady-state kinetic observations of the enzyme-catalysed oxidation of reduced azurin by nitrite indicated a marked increase in enzyme inactivation as the pH was raised from 5.7 to 7.2. Since NO, a product of the nitrite reductase activity of Pseudomonas cytochrome oxidase, is known to bind to the enzyme, a study was undertaken to try to assess the potential of NO as a product inhibitor. Investigations showed that samples of the oxidized protein at pH values 4, 5 and 6 bound NO to both haem c and d1 components, but oxidized enzyme samples at pH7 and above formed their reduced ligand-bound forms when placed under an atmosphere of the gas. Ascorbate-reduced enzyme samples at pH4, 5, 6 and 7 were also found to bind NO at both haem components, although at pH7 the rate of haem c binding was very slow. At pH8 and 9 only the ferrohaem d1 bound NO. Titration experiments on the reduced protein over the pH range 5–7, with nitrite as a precursor of NO, showed that the haem d1 had a much higher affinity than the haem c: experiments at pH5.2 and 5.9 with NO-equilibrated solutions revealed the same pattern of behaviour with the oxidized enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3