One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm

Author:

Wang Ya1,Xu Yinchuan1,Wu Congqing2,Xia Hongguang3,Wang Yingchao1,Nan Jinliang1,Chen Jinghai1,Yu Hong1,Zhu Wei1,Shi Peng1,Daugherty Alan24,Lu Hong S.24,Wang Jian’an1ORCID

Affiliation:

1. Department of Cardiology, The Second Affiliated Hospital, Cardiovascular Key Laboratory of Zhejiang Province, College of Medicine, Zhejiang University Hangzhou, Zhejiang, China

2. Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, U.S.A.

3. Department of Biochemistry and Molecular Biology, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China

4. Department of Physiology, University of Kentucky, Lexington, KY, U.S.A.

Abstract

Abstract Angiotensin (Ang) A is formed by the decarboxylation of the N terminal residue of AngII. The present study determined whether this one amino acid change impacted effects of AngII on abdominal aortic aneurysm (AAA) formation in mice. Computational analyses implicated that AngA had comparable binding affinity to both AngII type 1 and 2 receptors as AngII. To compare effects of these two octapeptides in vivo, male low-density lipoprotein receptor (Ldlr) or apolipoprotein E (Apoe) deficient mice were infused with either AngII or AngA (1 μg/kg/min) for 4 weeks. While AngII infusion induced AAA consistently in both mouse strains, the equivalent infusion rate of AngA did not lead to AAA formation. We also determined whether co-infusion of AngA would influence AngII-induced aortic aneurysm formation in male Apoe−/− mice. Co-infusion of the same infusion rate of AngII and AngA did not change AngII-induced AAA formation. Since it was reported that a 10-fold higher concentration of AngA elicited comparable vasoconstrictive responses as AngII, we compared a 10-fold higher rate (10 μg/kg/min) of AngA infusion into male Apoe−/− mice with AngII (1 μg/kg/min). This rate of AngA led to abdominal aortic dilation in three of ten mice, but no aortic rupture, whereas the 10-fold lower rate of AngII infusion led to abdominal aortic dilation or rupture in eight of ten mice. In conclusion, AngA, despite only being one amino acid different from AngII, has diminished effects on aortic aneurysmal formation, implicating that the first amino acid of AngII has important pathophysiological functions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3