Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies

Author:

LEE Ho Joon1,LIAN Lu-Yun2,SCRUTTON S. Nigel1

Affiliation:

1. Department of Biochemistry, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, U.K.

2. Biological NMR Centre, University of Leicester, Medical Sciences Building, University Road, Leicester LE1 9HN, U.K.

Abstract

The gene (alk G) encoding the two-iron rubredoxin of Pseudomonas oleovorans was amplified from genomic DNA by PCR and subcloned into the expression vector pKK223-3. The vector directed the high-level production of rubredoxin in Escherichia coli. A simple three-step procedure was used to purify recombinant rubredoxin in the 1Fe form. 1Fe-rubredoxin was readily converted to the 2Fe, apoprotein and cadmium forms after precipitation with trichloroacetic acid and resolubilization in the presence or absence of ferrous ammonium sulphate or CdCl2 respectively. Recombinant 1Fe and 2Fe rubredoxins are redox-active and able to transfer electrons from reduced spinach ferredoxin reductase to cytochrome c. The absorption spectrum and dichroic features of the CD spectrum for the cadmium-substituted protein are similar to those reported for cadmium-substituted Desulfovibrio gigas rubredoxin [Henehan, Poutney, Zerbe and Vasak (1993) Protein Sci. 2, 1756-1764]. Difference absorption spectroscopy of cadmium-substituted rubredoxin revealed the presence of four Gaussian-resolved maxima at 207, 228, 241 and 280 nm; the 241 nm band is attributable, from J⊘rgensen's electronegativity theory, to a CysS-CdII charge-transfer excitation. The 113Cd NMR spectrum of the 113Cd-substituted rubredoxin contains two 113Cd resonances with chemical shifts located at 732.3 and 730 p.p.m. The broader linewidth and high frequency shift of the resonance at 730 p.p.m. indicates that the Cd2+ ion is undergoing chemical exchange and, consistent with the difference absorption spectra, is bound less tightly than the Cd2+ ion, giving rise to the chemical shift at 732.3 p.p.m.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3