Synthesis and degradation of mitochondrial components in hypertrophied rat heart

Author:

Albin Richard1,Dowell Russell T.1,Zak Radovan1,Rabinowitz Murray1

Affiliation:

1. Departments of Medicine and Biochemistry, The University of Chicago, and the Franklin McLean Memorial Research Institute, Chicago, Ill. 60637, U.S.A.

Abstract

The accumulation of inner mitochondrial components of rat heart was studied 1 and 3 days after constriction of the ascending aorta of rats. By 1 day after aortic constriction, the activities of three mitochondrial respiratory enzymes/mg of cardiac homogenate protein were increased; after 3 days, specific activities had levelled off or decreased. Selective accumulation of inner mitochondrial membrane components 24h after aortic constriction was further indicated by increased left ventricular cytochrome c concentration (nmol/mg of protein). By 3 days after surgery, cytochrome c concentration was significantly diminished. Low-temperature spectroscopy of isolated mitochondria showed that the ratios of cytochromes c, b and a+a3 remained unchanged after aortic constriction, suggesting that cytochrome c was a good indicator of the response of the other mitochondrial inner-membrane cytochromes as well. The effect of cardiac hypertrophy on the turnover of cytochrome c was also examined. Cytochrome c was labelled in its haem group with δ-amino[2,3-3H2]laevulinate 3 days before aortic constriction. By 1 day after surgery the total ventricular radioactivity in cytochrome c of aortic banded animals was significantly higher than in sham-operated controls, indicating a decreased degradation rate in the former during the first postoperative day. δ-Aminolaevulinate was shown to be a particularly suitable precursor for such turnover studies, since it results in rapid pulse-labelling of cytochrome c (peak activity in 90min), is rapidly removed from the precursor pool (t½=30min) and is not reutilized.

Publisher

Portland Press Ltd.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3