Affiliation:
1. Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tuebingen D-72076, Germany
Abstract
Caenorhabditis elegans has recently been used as an attractive model system to gain insight into mechanisms of endocytosis in multicellular organisms. A combination of forward and reverse genetics has identified a number of new membrane trafficking factors. Most of them have mammalian homologues which function in the same transport events. We describe a novel C. elegans gene sand-1, whose loss of function causes profound endocytic defects in many tissues. SAND-1 belongs to a conserved family of proteins present in all eukaryotic species, whose genome is sequenced. However, SAND family has not been previously characterized in metazoa. Our comparison of C. elegans SAND-1 and its yeast homologue, Mon1p, showed a conserved role of the SAND-family proteins in late steps of endocytic transport.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献