Phosphatidic acid activation of protein kinase C-ζ overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids

Author:

Limatola C1,Schaap D1,Moolenaar W H1,van Blitterswijk W J1

Affiliation:

1. Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

Abstract

Phosphatidic acid (PA) is produced rapidly in agonist-stimulated cells, but the physiological function of this PA is unknown. We have examined the effects of PA on distinct isoforms of protein kinase C (PKC) using a new cell-free assay system. Addition of PA to cytosol from COS cells overexpressing PKC-alpha, -epsilon or -zeta differentially-activated all three isotypes, as shown by PKC autophosphorylation, and prominent phosphorylation of multiple endogenous substrates. In the absence of Ca2+, the diacylglycerol-insensitive zeta-isotype of PKC was most strongly activated by both PA and bisPA, a newly identified product of activated phospholipase D, with each lipid inducing its own profile of protein phosphorylation. BisPA was also a strong activator of PKC-epsilon, but a weak activator of PKC-alpha. Ca2+, at > or = 0.1 microM, inhibited PA and bisPA activation of PKC-zeta, but did not affect PKC-epsilon activation. In contrast, PKC-alpha was strongly activated by PA only in the presence of Ca2+. BisPA-induced phosphorylations mediated by PKC-zeta could be mimicked in part by other acidic phospholipids and unsaturated fatty acids. PA activation of PKC-zeta was unique in that PA not only stimulated PKC-zeta-mediated phosphorylation of distinctive substrates, but also caused an upward shift in electrophoretic mobility of PKC-zeta, which was not observed with other acidic lipids or with PKC-alpha or -epsilon. We have presented evidence that this mobility shift is not caused by PKC-zeta autophosphorylation, but it coincides with physical binding of PA to PKC-zeta. These results suggest that in cells stimulated under conditions where intracellular Ca2+ is at (or has returned to) basal level, PA may be a physiological activator of PKC-zeta.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3