AMPK is associated with the beneficial effects of antidiabetic agents on cardiovascular diseases

Author:

Lu Qingguo12,Li Xuan2,Liu Jia23,Sun Xiaodong24,Rousselle Thomas2,Ren Di2,Tong Nanwei1,Li Ji2

Affiliation:

1. Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 610041 Chengdu, China

2. Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 39216 Jackson, MS, U.S.A.

3. Department of Geriatrics, The First Hospital of Jilin University, 130021 Changchun, China

4. Department of Endocrinology, Affiliated Hospital of Weifang Medical University, 261000 Weifang, China

Abstract

Abstract Diabetics have higher morbidity and mortality in cardiovascular disease (CVD). A variety of antidiabetic agents are available for clinical choice. Cardiovascular (CV) safety assessment of these agents is crucial in addition to hypoglycemic effect before clinical prescription. Adenosine 5′-monophosphate-activated protein kinase (AMPK) is an important cell energy sensor, which plays an important role in regulating myocardial energy metabolism, reducing ischemia and ischemia/reperfusion (I/R) injury, improving heart failure (HF) and ventricular remodeling, ameliorating vascular endothelial dysfunction, antichronic inflammation, anti-apoptosis, and regulating autophagy. In this review, we summarized the effects of antidiabetic agents to CVD according to basic and clinical research evidence and put emphasis on whether these agents can play roles in CV system through AMPK-dependent signaling pathways. Metformin has displayed definite CV benefits related to AMPK. Sodium-glucose cotransporter 2 inhibitors also demonstrate sufficient clinical evidence for CV protection, but the mechanisms need further exploration. Glucagon-likepeptide1 analogs, dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors and thiazolidinediones also show some AMPK-dependent CV benefits. Sulfonylureas and meglitinides may be unfavorable to CV system. AMPK is becoming a promising target for the treatment of diabetes, metabolic syndrome and CVD. But there are still some questions to be answered.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3