Aggregation and neurotoxicity of α-synuclein and related peptides

Author:

EI-Agnaf O. M. A.1,Irvine G. B.2

Affiliation:

1. Department of Biological Sciences, Lancaster University, Lancaster LA1 4YQ, U.K.

2. Neuroscience Research Group, School of Biology and Biochemistry, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, U.K.

Abstract

Fibrillar deposits of α-synuclein occur in several neurodegenerative diseases. Two mutant forms of α-synuclein have been associated with early-onset Parkinson's disease, and a fragment has been identified as the non-amyloid-β peptide component of Alzheimer's disease amyloid (NAC). Upon aging, solutions of α-synuclein and NAC change conformation to β-sheet, detectable by CD spectroscopy, and form oligomers that deposit as amyloid-like fibrils, detectable by electron microscopy. These aged peptides are also neurotoxic. Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified. NAC(8–18) is the smallest fragment that aggregates, as indicated by the concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. Fragments NAC(8–18) and NAC(8–16) are toxic, whereas NAC(12–18), NAC(9–16) and NAC(8–15) are not. Hence residues 8–16 of NAC comprise the region crucial for toxicity. Toxicity induced by α-synuclein, NAC and NAC(1–18) oligomers occurs via an apoptotic mechanism, possibly initiated by oxidative damage, since these peptides liberate hydroxyl radicals in the presence of iron. Molecules with anti-aggregational and/or antioxidant properties may therefore be potential therapeutic agents.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3