Factors affecting interactions between prion protein isoforms

Author:

Caughey B.1,Baron G. S.1

Affiliation:

1. National Institutes of Health, NIAID, Rocky Mountain Labs, Hamilton, MT 59840, U.S.A.

Abstract

Interactions between normal, protease-sensitive prion protein (PrP-sen or PrPc) and its protease-resistant isoform (PrP-res or PrPsc) are critical in transmissible spongiform encephalopathy (TSE) diseases. To investigate the propagation of PrP-res between cells we tested whether PrP-res in scrapie brain microsomes can induce the conversion of PrP-sen to PrP-res if the PrP-sen is bound to uninfected raft membranes. Surprisingly, no conversion was observed unless the microsomal and raft membranes were fused or PrP-sen was released from raft membranes. These results suggest that the propagation of infection between cells requires transfer of PrP-res into the membranes of the recipient cell. To assess potential cofactors in PrP conversion, we used cell-free PrP conversion assays to show that heparan sulphate can stimulate PrP-res formation, supporting the idea that endogenous sulphated glycosaminoglycans can act as important cofactors or modulators of PrP-res formation in vivo. In an effort to develop therapeutics, the antimalarial drug quinacrine was identified as an inhibitor of PrP-res formation in scrapie-infected cell cultures. Confirmation of the latter result by others has led to the initiation of human clinical trials as a treatment for Creutzfeldt-Jakob disease. PrP-res formation can also be inhibited using a variety of other types of small molecule, specific synthetic PrP peptides, and an antiserum directed at the C-terminus of PrP-sen. The latter results help to localize the sites of interaction between PrP-sen and PrP-res. Disruption of those interactions with antibodies or peptidomimetic drugs may be an attractive therapeutic strategy. The likelihood that PrP-res inhibitors can rid TSE-infected tissues of PrP-res would presumably be enhanced if PrP-res formation were reversible. However, our attempts to measure dissociation of PrP-sen from PrP-res have failed under non-denaturing conditions. Finally, we have attempted to induce the spontaneous conversion of PrP-sen into PrP-res using low concentrations of detergents. A conformational conversion from α-helical monomers into high-β-sheet aggregates and fibrils was induced by low concentrations of the detergent sarkosyl; however, the aggregates had neither infectivity nor the characteristic protease-resistance of PrP-res.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3