Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore

Author:

RAMJEESINGH Mohabir1,UGWU Francisca1,LI Canhui1,DHANI Sonja1,HUAN Ling Jun1,WANG Yanchun1,BEAR Christine E.1

Affiliation:

1. Programme in Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada M5G 1X8

Abstract

Structural information is required to define the molecular basis for chloride conduction through CFTR (cystic fibrosis transmembrane conductance regulator). Towards this goal, we expressed MSD2, the second of the two MSDs (membrane-spanning domains) of CFTR, encompassing residues 857–1158 in Sf9 cells using the baculovirus system. In Sf9 plasma membranes, MSD2 migrates as expected for a dimer in non-dissociative PAGE, and confers the appearance of an anion permeation pathway suggesting that dimeric MSD2 mediates anion flux. To assess directly the function and quaternary structure of MSD2, we purified it from Sf9 cells by virtue of its polyhistidine tag and nickel affinity. Reconstitution of MSD2 into liposomes conferred a 4,4′-di-isothiocyanostilbene-2,2′-disulphonate-inhibitable, chloride-selective electrodiffusion pathway. Further, this activity is probably mediated directly by MSD2 as reaction of its single cysteine residue (Cys866) with the thiol modifying reagent, Nα(3-maleimidylpropionyl)biocytin, inhibited chloride flux. Only MSD2 dimers were labelled by Nα(3-maleimidylpropionyl)biocytin, supporting the idea that only dimeric MSD2 can mediate anion flux. As a further test of this hypothesis, we conducted a second purification procedure, wherein purified dimeric and monomeric MSD2 proteins were reconstituted separately. Only proteoliposomes containing stable MSD2 dimers mediated chloride electrodiffusion, providing direct evidence that dimeric MSD2 mediates chloride channel function. In summary, we have shown that the second membrane domain of CFTR can be purified and functionally reconstituted as a chloride channel, providing a tool for probing the structural basis of chloride conduction through CFTR.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3