Affiliation:
1. Key Lab of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
Abstract
A calcium (Ca2+)/calmodulin (CaM)-binding protein kinase (CBK) from tobacco (Nicotiana tabaccum), NtCBK2, has been characterized molecularly and biochemically. NtCBK2 has all 11 conserved subdomains of the kinase-catalytic domain and a CaM-binding site as shown by other kinases, including Ca2+-dependent protein kinase and chimaeric Ca2+/CaM-dependent protein kinases. However, this kinase does not contain an EF-hand motif for Ca2+ binding, and its activity was not regulated by Ca2+. Whereas NtCBK2 phosphorylated both itself and other substrates, such as histone IIIS and syntide-2, in a Ca2+/CaM-independent manner, as also shown by OsCBK, a CaM-binding protein kinase from rice (Oryza sativa), the kinase activity of NtCBK2 was greatly stimulated by Ca2+/CaM, whereas that of OsCBK was not. By molecular dissection analyses, the CaM-binding domain of NtCBK2 has been localized in a stretch of 30 amino acid residues at residue positions 431–460 as a 1-5-10 protein motif. Three tobacco CaM isoforms (NtCaM1, NtCaM3 and NtCaM13) used in the present study have been shown to bind to NtCBK2, but with different dissociation constants (Kds), as follows: NtCaM1, 55.7 nM; NtCaM3, 25.4 nM; and NtCaM13, 19.8 nM, indicating that NtCBK2 has a higher affinity for NtCaM3 and NtCaM13 than for NtCaM1. The enzymic activity of NtCBK2 was also modulated differently by various CaM isoforms. Whereas the phosphorylation activity of NtCBK2 was shown by assay to be enhanced only ≈2–3-fold by the presence of NtCaM1, the activity could be amplified up to 8–9-fold by NtCaM3 or 10–11-fold by NtCaM13, suggesting that NtCaM3 and NtCaM13 are better activators than NtCaM1 for NtCBK2.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献