A tobacco (Nicotiana tabaccum) calmodulin-binding protein kinase, NtCBK2, is regulated differentially by calmodulin isoforms

Author:

HUA Wei1,LIANG Shuping1,LU Ying-Tang1

Affiliation:

1. Key Lab of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China

Abstract

A calcium (Ca2+)/calmodulin (CaM)-binding protein kinase (CBK) from tobacco (Nicotiana tabaccum), NtCBK2, has been characterized molecularly and biochemically. NtCBK2 has all 11 conserved subdomains of the kinase-catalytic domain and a CaM-binding site as shown by other kinases, including Ca2+-dependent protein kinase and chimaeric Ca2+/CaM-dependent protein kinases. However, this kinase does not contain an EF-hand motif for Ca2+ binding, and its activity was not regulated by Ca2+. Whereas NtCBK2 phosphorylated both itself and other substrates, such as histone IIIS and syntide-2, in a Ca2+/CaM-independent manner, as also shown by OsCBK, a CaM-binding protein kinase from rice (Oryza sativa), the kinase activity of NtCBK2 was greatly stimulated by Ca2+/CaM, whereas that of OsCBK was not. By molecular dissection analyses, the CaM-binding domain of NtCBK2 has been localized in a stretch of 30 amino acid residues at residue positions 431–460 as a 1-5-10 protein motif. Three tobacco CaM isoforms (NtCaM1, NtCaM3 and NtCaM13) used in the present study have been shown to bind to NtCBK2, but with different dissociation constants (Kds), as follows: NtCaM1, 55.7 nM; NtCaM3, 25.4 nM; and NtCaM13, 19.8 nM, indicating that NtCBK2 has a higher affinity for NtCaM3 and NtCaM13 than for NtCaM1. The enzymic activity of NtCBK2 was also modulated differently by various CaM isoforms. Whereas the phosphorylation activity of NtCBK2 was shown by assay to be enhanced only ≈2–3-fold by the presence of NtCaM1, the activity could be amplified up to 8–9-fold by NtCaM3 or 10–11-fold by NtCaM13, suggesting that NtCaM3 and NtCaM13 are better activators than NtCaM1 for NtCBK2.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3