Affiliation:
1. Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Abstract
FA (fatty acid) synthesis represents a central, conserved process by which acyl chains are produced for utilization in a number of end-products such as biological membranes. Central to FA synthesis, the ACP (acyl carrier protein) represents the cofactor protein that covalently binds all fatty acyl intermediates via a phosphopantetheine linker during the synthesis process. FASs (FA synthases) can be divided into two classes, type I and II, which are primarily present in eukaryotes and bacteria/plants respectively. They are characterized by being composed of either large multifunctional polypeptides in the case of type I or consisting of discretely expressed mono-functional proteins in the type II system. Owing to this difference in architecture, the FAS system has been thought to be a good target for the discovery of novel antibacterial agents, as exemplified by the antituberculosis drug isoniazid. There have been considerable advances in this field in recent years, including the first high-resolution structural insights into the type I mega-synthases and their dynamic behaviour. Furthermore, the structural and dynamic properties of an increasing number of acyl-ACPs have been described, leading to an improved comprehension of this central carrier protein. In the present review we discuss the state of the understanding of FA synthesis with a focus on ACP. In particular, developments made over the past few years are highlighted.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
247 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献