Affiliation:
1. Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, U.K.
Abstract
Current models suggest that ligand-binding heterogeneity in HER1 [human EGFR (epidermal growth factor receptor] arises from negative co-operativity in signalling HER1 dimers, for which the asymmetry of the extracellular region of the Drosophila EGFR has recently provided a structural basis. However, no asymmetry is apparent in the current crystal structure of the isolated extracellular region of HER1. This receptor also differs from the Drosophila EGFR in that negative co-operativity is found only in full-length receptors in cells. Structural insights into HER1 in epithelial cells, derived from FLIM (fluorescence lifetime imaging microscopy) and two-dimensional FRET (Förster resonance energy transfer) combined with Monte Carlo and molecular dynamics simulations, have demonstrated a high-affinity ligand-binding HER1 conformation consistent with the extracellular region aligned flat on the plasma membrane. This conformation shares key features with that of the Drosophila EGFR, suggesting that the structural basis for negative co-operativity is conserved from invertebrates to humans, but that, in HER1, the extracellular region asymmetry requires interactions with the plasma membrane.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献