Stimulation of GLUT4 (glucose transporter isoform 4) storage vesicle formation by sphingolipid depletion

Author:

Cheng Zhi-Jie1,Singh Raman Deep1,Wang Teng-ke1,Holicky Eileen L.1,Wheatley Christine L.1,Bernlohr David A.2,Marks David L.1,Pagano Richard E.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, U.S.A.

2. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A.

Abstract

Insulin stimulates glucose transport in fat and skeletal muscle cells primarily by inducing the translocation of GLUT4 (glucose transporter isoform 4) to the PM (plasma membrane) from specialized GSVs (GLUT4 storage vesicles). Glycosphingolipids are components of membrane microdomains and are involved in insulin-regulated glucose transport. Cellular glycosphingolipids decrease during adipocyte differentiation and have been suggested to be involved in adipocyte function. In the present study, we investigated the role of glycosphingolipids in regulating GLUT4 translocation. We decreased glycosphingolipids in 3T3-L1 adipocytes using glycosphingolipid synthesis inhibitors and investigated the effects on GLUT4 translocation using immunocytochemistry, preparation of PM sheets, isolation of GSVs and FRAP (fluorescence recovery after photobleaching) of GLUT4–GFP (green fluorescent protein) in intracellular structures. Glycosphingolipids were located in endosomal vesicles in pre-adipocytes and redistributed to the PM with decreased expression at day 2 after initiation of differentiation. In fully differentiated adipocytes, depletion of glycosphingolipids dramatically accelerated insulin-stimulated GLUT4 translocation. Although insulin-induced phosphorylation of IRS (insulin receptor substrate) and Akt remained intact in glycosphingolipid-depleted cells, both in vitro budding of GLUT4 vesicles and FRAP of GLUT4–GFP on GSVs were stimulated. Glycosphingolipid depletion also enhanced the insulin-induced translocation of VAMP2 (vesicle-associated membrane protein 2), but not the transferrin receptor or cellubrevin, indicating that the effect of glycosphingolipids was specific to VAMP2-positive GSVs. Our results strongly suggest that decreasing glycosphingolipid levels promotes the formation of GSVs and, thus, GLUT4 translocation. These studies provide a mechanistic basis for recent studies showing that inhibition of glycosphingolipid synthesis improves glycaemic control and enhances insulin sensitivity in animal models of Type 2 diabetes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3