Expression of rat liver ketohexokinase in yeast results in fructose intolerance

Author:

Donaldson I A1,Doyle T C1,Matas N1

Affiliation:

1. Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

Abstract

Rat liver ketohexokinase (ATP:D-fructose 1-phosphotransferase; EC 2.7.1.3) was purified to homogeneity and the molecular mass of the protein was found by mass spectrometry to be 32,800 Da. The enzyme was cleaved and the amino acid sequences of seven peptides, comprising 24% of the total sequence, were determined. This sequence information was used to design oligonucleotide primers for a PCR using rat liver single-stranded cDNA as a template. The 224 bp PCR product was used as a probe to screen a rat liver cDNA library. A cDNA sequence of 1342 bp was obtained from three positive clones. This contained the entire coding region for ketohexokinase, and all seven peptides were identified in the predicted amino acid sequence. When ketohexokinase was expressed in Saccharomyces cerevisiae using the yeast expression vector pMA91, the cells became intolerant of the presence of fructose in their growth media. The growth of an exponential-phase culture was completely arrested within 90 min by the addition of fructose to a final concentration as low as 0.1% (w/v). This response is associated with an accumulation of fructose 1-phosphate. The cDNA for ketohexokinase encodes a protein composed of 299 amino acids with a combined molecular mass of 32,728 Da. This is in close agreement with the value for the isolated protein determined by mass spectrometry. The primary structure does not show any significant homology with those of other eukaryotic hexokinases, but it contains a highly conserved region that is present in three prokaryotic phosphotransferases that have furanose substrates.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3