Role of the 3′ untranslated region in the regulation of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase gene expression by selenium supply

Author:

BERMANO Giovanna1,ARTHUR John R.1,HESKETH John E.1

Affiliation:

1. Division of Biochemical Sciences, Rowett Research Institute, Bucksburn, Aberdeen, AB21 9SB, Scotland, U.K.

Abstract

Selenium is an essential nutrient and synthesis of selenoproteins is affected by limited selenium supply. During selenium deficiency there is a differential regulation of selenoprotein synthesis and gene expression; for example, there is a decrease in abundance of mRNA for cytosolic glutathione peroxidase (cGSH-Px) and a preservation of mRNA for phospholipid-hydroperoxide glutathione peroxidase (PHGSH-Px). This difference is not due to an alteration in the rate of transcription but might reflect differences in translation. The aim of the present work was to assess the role of cGSH-Px and PHGSH-Px 3´ untranslated regions (UTRs) in the regulation of selenoprotein mRNA stability and translation by using H4-II-E-C3 cells transfected with different constructs containing a type I iodothyronine deiodinase-coding region linked to different selenoprotein mRNA 3´ UTRs. Translational efficiency results showed that the efficiency of the 3´ UTRs in permitting selenocysteine incorporation is similar in selenium-replete conditions but, when selenium is limiting, the 3´ UTR of cGSH-Px is less efficient than the 3´ UTR of PHGSH-Px. The results suggest that the 3´ UTR of these selenoprotein mRNA species influences their extent of translation when selenium levels are low. The different sensitivity of the 3´ UTRs to selenium deficiency can explain the differential effect that selenium deficiency has on cGSH-Px and PHGSH-Px activity and mRNA levels, stability and translation. This might be partly responsible for channelling selenium for synthesis of PHGSH-Px rather than cGSH-Px.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3