Sulphur dioxide suppresses inflammatory response by sulphenylating NF-κB p65 at Cys38 in a rat model of acute lung injury

Author:

Chen Siyao12,Huang Yaqian1,Liu Zhiwei3,Yu Wen1,Zhang Heng4,Li Kun5,Yu Xiaoqi5,Tang Chaoshu67,Zhao Bin3,Du Junbao1,Jin Hongfang1

Affiliation:

1. Department of Pediatrics, Peking University First Hospital, Beijing 100034, P.R. China

2. Department of the Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, P.R. China

3. Department of Emergency, Beijing Jishuitan Hospital, Beijing 100035, P.R. China

4. Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China

5. Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P.R. China

6. Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, P.R. China

7. Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, P.R. China

Abstract

The present study was designed to investigate whether endogenous sulphur dioxide (SO2) controlled pulmonary inflammation in a rat model of oleic acid (OA)-induced acute lung injury (ALI). In this model, adenovirus expressing aspartate aminotransferase (AAT) 1 was delivered to the lungs, and the levels of SO2 and proinflammatory cytokines in rat lung tissues were measured. In the human alveolar epithelial cell line A549, the nuclear translocation and DNA binding activities of wild-type (wt) and C38S (cysteine-to-serine mutation at p65 Cys38) NF-κB p65 were detected. GFP-tagged C38S p65 was purified from HEK 293 cells and the sulphenylation of NF-κB p65 was studied. OA caused a reduction in SO2/AAT pathway activity but increased pulmonary inflammation and ALI. However, either the presence of SO2 donor, a combination of Na2SO3 and NaHSO3, or AAT1 overexpression in vivo successfully blocked OA-induced pulmonary NF-κB p65 phosphorylation and consequent inflammation and ALI. Either treatment with an SO2 donor or overexpression of AAT1 down-regulated OA-induced p65 activity, but AAT1 knockdown in alveolar epithelial cells mimicked OA-induced p65 phosphorylation and inflammation in vitro. Mechanistically, OA promoted NF-κB nuclear translocation, DNA binding activity, recruitment to the intercellular cell adhesion molecule (ICAM)-1 promoter, and consequent inflammation in epithelial cells; these activities were reduced in the presence of an SO2 donor. Furthermore, SO2 induced sulphenylation of p65, which was blocked by the C38S mutation on p65 in epithelial cells. Hence, down-regulation of SO2/AAT is involved in pulmonary inflammation during ALI. Furthermore, SO2 suppressed inflammation by sulphenylating NF-κB p65 at Cys38.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3