Effects of anions on a monomeric and a dimeric arginine kinase

Author:

Anosike E O1,Watts D C1

Affiliation:

1. Department of Biochemistry, Guy's Hospital Medical School, London SE1 9RT, U.K.

Abstract

1. Some effects of anions on the rates of phosphoarginine synthesis by monomeric (lobster) and by dimeric (Holothuria forskali) arginine kinases are reported. 2. As with creatine kinase, acetate ions activate both enzymes: Cl- was also found to activate both although this was an inhibitor of creatine kinase. 3. NO3- inhibits the lobster enzyme. Inhibition is of the mixed type with respect to MgATP. Ki > Ki' and Ks > Ks' indicating that the presence of NO3- promotes the binding of substrate and vice versa. 4. NO3- alone has no effect on the difference spectrum of the lobster enzyme but in the presence of arginine, MgATP, MgADP, MgAMP or MgIDP the difference spectrum is greatly enhanced. A profound effect on the ionization state of tyrosine residues is inferred. 5. With the Holothuria enzyme low concentrations of NO3- activate in a manner that is competitive with arginine. Higher concentrations cause inhibition of the mixed type with respect to arginine in a similar manner to that found with MgATP for the lobster kinase. 6. Of a range of anions tested only NO3- and NO2- enhanced the inhibition of enzyme activity by MgADP, indicating the formation of a pseudo-transition-state dead-end complex, enzyme-arginine-NO3--MgADP. The effect was essentially independent of temperature with the Holothuria enzyme, but with the lobster enzyme was much less marked and temperature dependent. The difference may reflect the different stabilities of the monomer and dimer enzymes, although with neither arginine kinase is the stabilization of the dead-end complex as marked as is found with creatinine kinase.

Publisher

Portland Press Ltd.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3