Adenosine diphosphate ribose transferase from baby-hamster kidney cells (BHK-21/C13). Characterization of the reaction and product

Author:

Furneaux H M,Pearson C K

Abstract

Some properties of ADP-ribose transferase, and its reaction product, from BHK-21/C13 cells are described. Enzyme activity was found almost exclusively in nuclei (90%), with the remaining 10% located in the cytosolic fraction. The nuclear enzyme is chromatin-bound and requires bivalent cations, preferably Mg2+, a pH of 8.0 and a temperature of 25 degrees C for optimal activity. Chromatin preparations incorporated radioactivity from [14C]NAD+ into acid-insoluble material for about 60 min. Kinetics for substrate NAD+ utilization were not of Michaelis–Menten type; biphasic kinetics were shown from a double-reciprocal plot (1/reaction velocity against 1/[NAD+]) and from a ‘Hofstee’ plot (reaction velocity/[NAD+] against reaction velocity). The transferase is unstable in the absence of Mg2+ ions. It is inhibited by thymidine, nicotinamide and nicotinamide analogues, but not by ATP, which stimulates it at concentrations of 5 mM and above. The enzyme requires thiol groups for activity; it is readily inhibited by N-ethylmaleimide at 0.5 mM. The product of the reaction is stable under acid conditions at temperatures up to 25 degrees C, but it is hydrolysed by HClO4 at 70 degrees C. It is resistant to NaOH, but is cleaved from its attachment to protein with alkali into trichloroacetic acid-insoluble and -soluble components. On the basis of Cs2SO4- density-gradient analysis under denaturing conditions (gradients included urea and guanidinium hydrochloride), and analysis of the reaction product directly on hydroxyapatite, we conclude that most of the radioactive ADP-ribose residues are firmly bound to protein, presumably in covalent linkage. Hydroxyapatite-chromatographic analysis of ADP-ribose residues released from protein by alkaline digestion showed a spectrum of molecular sizes including mono-, oligo- and poly-(ADP-ribose), when chromatin was incubated initially with [14C]NAD+ for 10 min and then for a further 30 min after addition of excess non-radioactive NAD+, only about 10% of the radioactive mono-(ADP-ribose) could be ‘chased’ into longer-chain molecules. Hydroxyapatite analysis was also used to show that, whereas all ADP-ribose residues were released from protein with NaOH, only 50% of them were susceptible to hydroxylamine. These hydroxylamine-sensitive residues included all size classes, although mono-(ADP-ribose) predominated. Finally, there was an approximately equal distribution of ADP-ribose incorporated into HCl-soluble proteins (including the histones) and HCl-insoluble proteins (including the non-histone proteins) when chromatin was incubated with NAD+ up to 0.5 mM, but at higher NAD+ concentrations more ADP-ribose was incorporated into the HCl-soluble fraction (82% at 4.0 mM-NAD+).

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3