Specialized transcription factories

Author:

Bartlett Jon1,Blagojevic Jelena1,Carter David1,Eskiw Christopher1,Fromaget Maud1,Job Christy1,Shamsher Monee1,Trindade Inês Faro1,Xu Meng1,Cook Peter R.1

Affiliation:

1. Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K.

Abstract

We have previously suggested a model for the eukaryotic genome based on the structure of the bacterial nucleoid where active RNA polymerases cluster to loop the intervening DNA. This organization of polymerases into clusters – which we call transcription ‘factories’ – has important consequences. For example, in the nucleus of a HeLa cell the concentration of soluble RNA polymerase II is ∼1 mM, but the local concentration in a factory is 1000-fold higher. Because a promoter can diffuse ∼100 nm in 15 s, one lying near a factory is likely to initiate; moreover, when released at termination, it will still lie near a factory, and the movement and modifications (e.g. acetylation) accompanying elongation will leave it in an ‘open’ conformation. Another promoter out in a long loop is less likely to initiate, because the promoter concentration falls off with the cube of the distance from the factory. Moreover, a long tether will buffer it from transcription-induced movement, making it prone to deacetylation, deposition of HP1 (heterochromatin protein 1), and incorporation into heterochromatin. The context around a promoter will then be self-sustaining: productive collisions of an active promoter with the factory will attract factors increasing the frequency of initiation, and the longer an inactive promoter remains inactive, the more it becomes embedded in heterochromatin. We review here the evidence that different factories may specialize in the transcription of different groups of genes.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3