The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate

Author:

Okada Y1,Harris E D1,Nagase H1

Affiliation:

1. Department of Medicine and Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A.

Abstract

Two active forms (Mr 45,000 and 28,000) of a metalloendopeptidase that digest proteoglycans and other extracellular matrix components of connective tissues have previously been purified from rheumatoid synovial cells and characterized [Okada, Nagase & Harris (1986) J. Biol. Chem. 261, 14245-14255]. To study the mechanisms of activation the precursor of this metalloendopeptidase has now been purified. The final products are homogeneous on SDS/polyacrylamide-gel electrophoresis and identified as a set of zymogens of Mr 57,000 and 59,000, in which the latter form is probably the product of post-translational glycosylation of the Mr 57,000 zymogen, as it binds to concanavalin A. The zymogen can be activated by trypsin, chymotrypsin, plasma kallikrein, plasmin and thermolysin, but not by thrombin. Although the activated metalloendopeptidase is further degraded by trypsin, plasma kallikrein and thermolysin during a prolonged incubation, it is relatively stable against plasmin and chymotrypsin. Activation with 4-aminophenylmercuric acetate is dependent on its concentration. It requires the reaction with the zymogen, possibly through thiol groups, and the continued presence of the agent. During this treatment the zymogen undergoes a sequential processing; first it becomes active without changing its apparent molecular mass, and then it is processed to low-Mr species of Mr 46,000, 45,000 (HMM) and 28,000 (LMM). The rate of conversion of the precursor into an initial intermediate of Mr 46,000 follows first-order kinetics (t1/2 2.0 h with 1.5 mM-4-amino-phenylmercuric acetate at 37 degrees C) and is independent of the initial concentration of the zymogen or the presence of up to a 676-fold molar excess of substrate, whereas the generation of HMM and LMM species is affected by these parameters. These results indicate that activation of the prometalloendopeptidase by an organomercurial compound is initiated by the molecular perturbation of the zymogen that results in conversion into the 46,000-Mr intermediate by an intramolecular action; the subsequent processing of this intermediate in HMM and LMM species is a bimolecular reaction. In vivo it is probable that the precursor of this metalloendopeptidase is activated either by direct limited proteolysis by tissue or plasma endopeptidases, or, alternatively, by factors that cause certain conformational changes in the zymogen molecule.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3