Bile pigments as HIV-1 protease inhibitors and their effects on HIV-1 viral maturation and infectivity in vitro

Author:

McPHEE Fiona1,CALDERA Patricia S.1,BEMIS Guy W.1,McDONAGH Antony F.2,KUNTZ Irwin D.1,CRAIK Charles S.1

Affiliation:

1. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, U.S.A.

2. Division of Gastroenterology, Room S-357, Box 0538, University of California, San Francisco, CA 94143, U.S.A.

Abstract

Using recently developed molecular-shape description algorithms, we searched the Available Chemical Directory for known compounds similar in shape to the potent HIV-1 protease inhibitor Merck L-700,417; 15 compounds most similar in shape to the inhibitor were selected for testing in vitro. Four of these inhibited the protease at 100 µM or less and the most active of the four were the naturally occurring pigments biliverdin and bilirubin. Biliverdin and bilirubin inhibited recombinant HIV-1 protease in vitro at pH 7.8 with Ki values of approx. 1 µM, and also inhibited HIV-2 and simian immunodeficiency virus proteases. The related pyrrolic pigments stercobilin, urobilin, biliverdin dimethyl ester and xanthobilirubic acid showed similar inhibitory activity at low micromolar concentrations. Biliverdin, bilirubin and xanthobilirubic acid did not inhibit viral polyprotein processing in cultured cells, but they reduced viral infectivity significantly. At 100 µM, xanthobilirubic acid affected viral assembly, resulting in a 50% decrease in the generation of infectious particles. In contrast, at the same concentrations biliverdin and bilirubin exerted little or no effect on viral assembly but blocked infection of HeLaT4 cells by 50%. These results suggest that bile pigments might be a new class of potential lead compounds for developing protease inhibitors and they raise the question of whether hyperbilirubinaemia can influence the course of HIV infection.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3