Spontaneous activation of NADPH oxidase in a cell-free system: unexpected multiple effects of magnesium ion concentrations

Author:

CROSS Andrew R.1,ERICKSON Richard W.2,ELLIS Beverly A.1,CURNUTTE John T.2

Affiliation:

1. Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, U.S.A.

2. Department of Immunology, Genentech, Inc., South San Francisco, CA 94080, U.S.A.

Abstract

The role of magnesium ions in the activation of NADPH oxidase has been investigated using flavocytochrome b-245 and either neutrophil cytosol or mixtures of recombinant p40phox, p47phox, p67phox and Rac2. Purified flavocytochrome b-245 is highly active (turnover number 120–150 mol of O2-/s per mol of cytochrome haem) in the absence of Mg2+, in marked contrast to neutrophil membranes or detergent-solubilized membranes, which have an absolute requirement for Mg2+ for NADPH oxidase activity. It was also found that Mg2+ affected the anionic amphiphile requirement for oxidase activation, and this was dependent on whether neutrophil cytosol or mixtures of recombinant cytosolic proteins were used in the assay. Unexpectedly we found that, using purified flavocytochrome b-245 and recombinant cytosolic proteins, NADPH oxidase undergoes spontaneous activation in the absence of anionic amphiphiles under Mg2+-free conditions. The results suggest that Mg2+ ions play an important role in NADPH oxidase function, perhaps stabilizing the 260 kDa complex of cytosolic phox proteins or the regulation of a guanine nucleotide-binding protein. We provide evidence that if the latter explanation is correct, the identity of the guanine nucleotide-binding protein is unlikely to be Rap1a.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3