Tricarboxylic acid-cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate aspartate, glutamine and γ-amino butyrate

Author:

Clarke D. D.1,Nicklas W. J.1,Berl S.2

Affiliation:

1. Department of Chemistry, Fordham University, Bronx, N.Y. 10458, U.S.A.

2. Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, N.Y. 10032, U.S.A.

Abstract

1. The effect of fluoroacetate and fluorocitrate on the compartmentation of the glutamate–glutamine system was studied in brain slices with l-[U-14C]glutamate, l-[U-14C]aspartate, [1-14C]acetate and γ-amino[1-14C]butyrate as precursors and in homogenates of brain tissue with [1-14C]acetate. The effect of fluoroacetate was also studied in vivo in mouse brain with [1-14C]acetate as precursor. 2. Fluoroacetate and fluorocitrate inhibit the labelling of glutamine from all precursors but affect the labelling of glutamate to a much lesser extent. This effect is not due to inhibition of glutamine synthetase. It is interpreted as being due to selective inhibition of the metabolism of a small pool of glutamate that preferentially labels glutamine.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3