Expression profiles and prognostic significance of WNT family members in glioma via bioinformatic analysis

Author:

Xu Anqi1ORCID,Yang Huiping2,Gao Kunjie2,Zhan Zhengming1,Song Zibin2,Huang Tengyue3,Song Ye1ORCID

Affiliation:

1. Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China

2. The First Clinical Medical Institute of Southern Medical University, Guangzhou 510515, P.R. China

3. Gannan Medical University, Ganzhou 341000, Jiang xi, P.R. China

Abstract

Abstract Aims: The dysregulation and essential role of WNTs in glioma have been widely implicated. However, there is a paucity of literature on the expression status of all the 19 WNTs in glioma. Our study was aimed to evaluate the expression and prognostic values of the 19 WNTs in glioma. Methods: mRNA expression and clinical data were retrieved from the Cancer Genome Atlas (TCGA) database, Chinese Glioma Genome Atlas (CGGA), GTEx and ONCOMINE databases. The 50 frequent neighbor genes of WNT5A and WNT10B were shown with PPI network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results: We found that the mRNA expression of WNT5A was significantly higher in glioma; however, the WNT10B expression was significantly lower in glioma. Furthermore, the expression of WNT5A and WNT10B was associated with the clinicopathology of glioma. The survival analysis revealed that the higher expressions of WNT5A and WNT16 were associated poor overall survival (OS) in patients with glioma. Conversely, overexpression of WNT3, WNT5B, and WNT10B was associated with better OS. Finally, Go and KEGG analysis revealed WNT5A was associated with multiple signal translations, and crucial oncogenes (EGFR and MDM2) and 2 important tumor suppressors (PTEN and IKN4a/ARF) were found closely correlated with WNT5A in glioma. Conclusion: Among 19WNTs, WNT5A can serve as a candidate to diagnose and therapy glioma, while WNT10B might be valuable for anti-glioma research. The presumed direction was provided to explore the relation of WNTs signal and multiple pathways in glioma.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3