How lipids affect the energetics of co-translational alpha helical membrane protein folding

Author:

Brady Ryan1,Harris Nicola J.1,Pellowe Grant A.1,Gulaidi Breen Samuel12,Booth Paula J.1ORCID

Affiliation:

1. King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.

2. The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.

Abstract

Membrane proteins need to fold with precision in order to function correctly, with misfolding potentially leading to disease. The proteins reside within a hydrophobic lipid membrane and must insert into the membrane and fold correctly, generally whilst they are being translated by the ribosome. Favourable and unfavourable free energy contributions are present throughout each stage of insertion and folding. The unfavourable energy cost of transferring peptide bonds into the hydrophobic membrane interior is compensated for by the favourable hydrophobic effect of partitioning a hydrophobic transmembrane alpha-helix into the membrane. Native membranes are composed of many different types of lipids, but how these different lipids influence folding and the associated free energies is not well understood. Altering the lipids in the bilayer is known to affect the probability of transmembrane helix insertion into the membrane, and lipids also affect protein stability and can promote successful folding. This review will summarise the free energy contributions associated with insertion and folding of alpha helical membrane proteins, as well as how lipids can make these processes more or less favourable. We will also discuss the implications of this work for the free energy landscape during the co-translational folding of alpha helical membrane proteins.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3