Affiliation:
1. Joint Diseases Laboratory, Shriners Hospital, Montreal, Que. H3G 1A6, Canada
Abstract
The effects of treatment of purified neonatal human articular-cartilage proteoglycan aggregate with H2O2 were studied. (1) Exposure of proteoglycan aggregate to H2O2 resulted in depolymerization of the aggregate and modification of the core protein of both the proteoglycan subunits and the link proteins. (2) Treatment of the proteoglycan aggregate with H2O2 rendered the proteoglycan subunits unable to interact with hyaluronic acid, with minimal change in their hydrodynamic size. (3) Specific cleavages of the neonatal link proteins occurred. The order in which the major products were generated and their electrophoretic mobilities resembled the pattern observed during human aging. (4) The proteolytic changes in the link proteins were inhibited in the presence of transition-metal-ion chelators, thiourea or tetramethylurea, suggesting that generation of hydroxyl radicals from H2O2 by trace transition-metal ions via a site-specific Fenton reaction may be responsible for the selective cleavages observed. (5) Cleavage of the link proteins in proteoglycan aggregates by H2O2 was shown to have a limited effect on the susceptibility of these proteins to cleavage by trypsin. (6) The relationship between these changes and those observed in cartilage during human aging suggests that some of the age-related changes in the structure of human cartilage proteoglycan aggregate may be the result of radical-mediated damage.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献