Affiliation:
1. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, U.S.A.
2. Beadle Center for Genetics, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, U.S.A.
Abstract
TA (toxin–antitoxin) loci are ubiquitous in prokaryotic micro-organisms, including archaea, yet their physiological function is largely unknown. For example, preliminary reports have suggested that TA loci are microbial stress-response elements, although it was recently shown that knocking out all known chromosomally located TA loci in Escherichia coli did not have an impact on survival under certain types of stress. The hyperthermophilic crenarchaeon Sulfolobus solfataricus encodes at least 26 vapBC (where vap is virulence-associated protein) family TA loci in its genome. VapCs are PIN (PilT N-terminus) domain proteins with putative ribonuclease activity, while VapBs are proteolytically labile proteins, which purportedly function to silence VapCs when associated as a cognate pair. Global transcriptional analysis of S. solfataricus heat-shock-response dynamics (temperature shift from 80 to 90°C) revealed that several vapBC genes were triggered by the thermal shift, suggesting a role in heat-shock-response. Indeed, knocking out a specific vapBC locus in S. solfataricus substantially changed the transcriptome and, in one case, rendered the crenarchaeon heat-shock-labile. These findings indicate that more work needs to be done to determine the role of VapBCs in S. solfataricus and other thermophilic archaea, especially with respect to post-transcriptional regulation.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献