Kinetic studies of rat liver hexokinase D (glucokinase) in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released

Author:

MONASTERIO Octavio1,CÁRDENAS María Luz2

Affiliation:

1. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile,

2. Institut Fédératif ‘Biologie Structurale et Microbiologie’, Bioénergétique et Ingénierie des Protéines, Centre National de la Recherche Scientifique, 31 chemin Joseph-Aiguier, B.P. 71, 13402 Marseille Cedex 20, France

Abstract

The kinetic mechanism of rat liver hexokinase D ('glucokinase') was studied under non-co-operative conditions with 2-deoxyglucose as substrate, chosen to avoid uncertainties derived from the co-operativity observed with the physiological substrate, glucose. The enzyme shows hyperbolic kinetics with respect to both 2-deoxyglucose and MgATP2-, and the reaction follows a ternary-complex mechanism with Km = 19.2±2.3mM for 2-deoxyglucose and 0.56±0.05mM for MgATP2-. Product inhibition by MgADP- was mixed with respect to MgATP2- and was largely competitive with respect to 2-deoxyglucose, suggesting an ordered mechanism with 2-deoxyglucose as first substrate and MgADP- as last product. Dead-end inhibition by N-acetylglucosamine, AMP and the inert complex CrATP [the complex of ATP with chromium in the 3+ oxidation state, i.e. Cr(III)—ATP], studied with respect to both substrates, also supports an ordered mechanism with 2-deoxyglucose as first substrate. AMP appears to bind both to the free enzyme and to the E·dGlc complex. Experiments involving protection against inactivation by 5,5′-dithiobis-(2-nitrobenzoic acid) support the existence of the E·MgADP- and E·AMP complexes suggested by the kinetic studies. MgADP-, AMP, 2-deoxyglucose, glucose and mannose were strong protectors, supporting the existence of binary complexes with the enzyme. Glucose 6-phosphate failed to protect, even at concentrations as high as 100mM, and MgATP2- protected only slightly (12%). The inactivation results support the postulated ordered mechanism with 2-deoxyglucose as first substrate and MgADP- as last product. In addition, the straight-line dependence observed when the reciprocal value of the inactivation constant was plotted against the sugar-ligand concentration supports the view that there is just one sugar-binding site in hexokinase D.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3