Structure and function of the globin and globin gene from the Antarctic mollusc Yoldia eightsi

Author:

DEWILDE Sylvia1,ANGELINI Elisa2,KIGER Laurent3,MARDEN Michael C.3,BELTRAMINI Mariano2,SALVATO Benedetto2,MOENS Luc1

Affiliation:

1. Department of Biochemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium

2. Department of Biology and CNR Centre for Metalloproteins, University of Padova, via Colombo 35110 Padova, Italy,

3. INSERM U473, 84 rue General Leclerc, 94276 Le Kremlin-Bicêtre, France

Abstract

The mechanism of adaptation of haemoglobin from the Antarctic mollusc Yoldia eightsi to its low-temperature environment is a decrease in the oxygen affinity via an increased ligand-dissociation rate. At 2°C this haemoglobin has an oxygen affinity similar to other haemoglobins at 25°C. At 25°C, Yoldia haemoglobin shows a low oxygen affinity, resembling that of human deoxyhaemoglobin. The mechanism involves a lower binding energy to oxygen, suggesting a loss or weakening of the usual hydrogen bond, leading to a higher oxygen-dissociation rate. However, Yoldia haemoglobin has the usual distal and proximal histidines, so the primary structure alone does not provide an obvious explanation for the low affinity. The CO-binding kinetics are biphasic, with the fraction of slow phase increasing at higher protein concentrations, indicating the formation of dimers or a higher level of polymerization. The protein—protein interaction appears to be of hydrophobic nature, since it can be partially reversed by addition of ethylene glycol as co-solvent. While the CO-association rates differ by a factor of 10, the oxygen equilibrium data could be simulated with a single affinity. The Yoldia haemoglobin gene contains three introns, interrupting the coding region at position NA1.2, B12.2 and G7.0. The conservation of the B12.2 and G7.0 introns is in contrast with the unprecedented NA1.2 intron. Phylogenetic analyses reveal a gene tree where the Yoldia haemoglobin gene is separated from other mollusc globin genes, confirming the specific adaptation of the Yoldia haemoglobin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3