The use of ternary complexes to study ionizations and isomerizations during catalysis by lactate dehydrogenase

Author:

Holbrook J. John1,Stinson Robert A.2

Affiliation:

1. Department of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.

2. Department of Pathology, Division of Medical Laboratory Science, Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada

Abstract

1. The binding of oxamate to pig heart and pig muscle isoenzymes of lactate dehydrogenase in the presence of NADH was studied by fluorescence titration. The dissociation constant of oxamate from the heart enzyme complex is 3μm and from the muscle isoenzyme 25μm at pH5. These values quantitatively increase with pH as predicted if oxamate can bind only to the enzyme–NADH complex if a group with pK6.9 is protonated. There are four non-interacting oxamate-binding sites per tetramer. 2. o-Nitrophenylpyruvate is a poor substrate for both isoenzymes but has a reasonable affinity to the heart isoenzyme. Initially, it forms an enzyme–NADH–substrate complex, which can be detected either by protein-fluorescence quenching or by NADH-fluorescence quenching. The pH-dependence of the dissociation constant of nitrophenylpyruvate also shows that this ternary complex can only form if a group with pK6.8 is protonated. Taken with the results of chemical-modification experiments, these results allow the pK of 6.8 to be assigned to a system probably involving the imidazole side chain of histidine-195. Formation of a ternary complex from a binary one at pH8 is predicted to result in a proton being taken up from solution. 3. Isotope-effect studies with NADH and its deuterium analogue show that the rapidly formed ternary complex with o-nitrophenylpyruvate slowly isomerizes to give an active ternary complex, which then rapidly decomposes to NAD+. The isomerization is pH-independent, and it is suggested that histidine-195 is still protonated in the activated ternary complex, which is present before hydride transfer. 4. All four subunits of the enzyme are kinetically equivalent with respect to the oxidation of bound NADH by o-nitrophenylpyruvate. 5. A partial mechanism for the enzyme is described which emphasizes the isomerizations and ionizations involved in forming the reduced ternary complex at pH6 and 8.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3