Structure–function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons

Author:

Verdoucq Lionel1,Grondin Alexandre1,Maurel Christophe1

Affiliation:

1. Biochimie et Physiologie Moleculaire des Plantes, Institut de Biologie Integrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Universite Montpellier 2, F-34060 Montpellier Cedex 1, France

Abstract

Water channel proteins, AQPs (aquaporins), of the PIP (plasma membrane intrinsic protein) subfamily, provide a means for fine and quick adjustments of the plant water status. A molecular model for gating of PIPs by cytosolic protons (H+) and divalent cations was derived from the atomic structure of spinach SoPIP2;1 (Spinacia oleracea PIP2;1) in an open- and a closed-pore conformation. In the present study, we produced the Arabidopsis AtPIP2;1 (Arabidopsis thaliana PIP2;1) homologue in Pichia pastoris, either WT (wild-type) or mutations at residues supposedly involved in gating. Stopped-flow spectrophotometric measurements showed that, upon reconstitution in proteoliposomes, all forms function as water channels. The first functional evidence for a direct gating of PIPs by divalent (bivalent) cations was obtained. In particular, cadmium and manganese were identified, in addition to calcium (Ca2+) and H+ as potent inhibitors of WT AtPIP2;1. Our results further show that His199, the previously identified site for H+ sensing, but also N-terminal located Glu31, and to a lesser extent Asp28, are involved in both divalent-cation- and H+-mediated gating. In contrast, mutation of Arg124 rendered AtPIP2;1 largely insensitive to Ca2+ while remaining fully sensitive to H+. The role of these residues in binding divalent cations and/or stabilizing the open or closed pore conformations is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3