Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization

Author:

SWATTON Jane E.1,MORRIS Stephen A.1,CARDY Thomas J. A.1,TAYLOR Colin W.1

Affiliation:

1. Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, U.K.

Abstract

There are three subtypes of mammalian Ins(1,4,5)P3 (InsP3) receptor, each of which forms an intracellular Ca2+ channel. Biphasic regulation of InsP3 receptors by cytosolic Ca2+ is well documented in cells expressing predominantly type 1 or type 2 InsP3 receptors and might contribute to the regenerative recruitment of Ca2+ release events and to limiting their duration in intact cells. The properties of type 3 receptors are less clear. Bilayer recording from InsP3 receptors of RIN-5F cells, cells in which the InsP3 receptors are likely to be largely type 3, recently suggested that the receptors are not inhibited by Ca2+ [Hagar, Burgstahler, Nathanson and Ehrlich (1998) Nature (London) 296, 81-84]. By using antipeptide antisera that either selectively recognized each InsP3 receptor subtype or interacted equally well with all subtypes, together with membranes from Spodoptera frugiperda (Sf9) cells expressing only single receptor subtypes to calibrate the immunoblotting, we quantified the relative levels of expression of type 1 (17%) and type 3 (77%) InsP3 receptors in RINm5F cells. In unidirectional 45Ca2+ efflux experiments from permeabilized RINm5F cells, submaximal concentrations of InsP3 released only a fraction of the InsP3-sensitive Ca2+ stores, indicating that responses to InsP3 are quantal. Increasing the cytosolic free [Ca2+] ([Ca2+]i) from approx. 4 to 186 nM increased the sensitivity of the Ca2+ stores to InsP3: the EC50 decreased from 281±15 to 82±2 nM. Further increases in [Ca2+]i massively decreased the sensitivity of the stores to InsP3, by almost 10-fold when [Ca2+]i was 2.4 μM, and by more than 3000-fold when it was 100 μM. The inhibition caused by 100 μM Ca2+ was fully reversed within 60 s of the restoration of [Ca2+]i to 186 nM. The effect of submaximal InsP3 concentrations on Ca2+ mobilization from permeabilized RINm5F cells is therefore biphasically regulated by cytosolic Ca2+. We conclude that type 3 InsP3 receptors of RINm5F cells mediate quantal Ca2+ release and they are biphasically regulated by cytosolic Ca2+, either because a single type 1 subunit within the tetrameric receptor confers the Ca2+ inhibition or because the type 3 subtype is itself directly inhibited by Ca2+.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3