Stopped-flow kinetics of locked nucleic acid (LNA)–oligonucleotide duplex formation: studies of LNA–DNA and DNA–DNA interactions

Author:

CHRISTENSEN Ulla1,JACOBSEN Nana2,RAJWANSHI Vivek K.1,WENGEL Jesper1,KOCH Troels2

Affiliation:

1. Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark,

2. Exiqon A/S, Bygstubben 9, DK-2950 Vedbaek, Denmark

Abstract

The locked nucleic acid (LNA) monomer is a conformationally restricted nucleotide analogue with an extra 2′-O,4′-C-methylene bridge added to the ribose ring. Oligonucleotides that contain LNA monomers have shown greatly enhanced thermal stability when hybridized to complementary DNA and RNA and are considered most promising candidates for efficient recognition of a given mixed sequence in a nucleic acid duplex and as an antisense molecule. Here the kinetics and thermodynamics of a series of oligonucleotide duplex formations of DNA–DNA and DNA–LNA octamers were studied using stopped-flow absorption measurements at 25°C and melting curves. The reactions of the DNA octamer 5′-CAGGAGCA-3′ with its complementary DNA octamer 5′-TGCTCCTG-3′, and with the LNA octamers 5′-TLGCTCCTG-3′ (LNA-1), 5′-TLGCTLCCTG-3′ (LNA-2) and 5′-TLGCTLCCTLG-3′(LNA-3), containing respectively one, two or three thymidine 2′-O,4′-C-methylene-(D-ribofuranosyl) nucleotide monomers, designated TL, were studied. In all cases were seen fast second-order association reactions with kobs = 2×107M-1˙s-1. At 25°C the dissociation constants of the duplexes obtained from melting curves were: DNA–DNA, 10nM; DNA–LNA-1, 20nM; DNA–LNA-2, 2nM; and DNA–LNA-3, 0.3nM; thus the greatly enhanced duplex stability induced by LNA is confirmed. Since the association rates were all equal this increase in stability is due to slower rates of dissociation of the complexes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3