Haem oxygenase 1 gene induction by glucose deprivation is mediated by reactive oxygen species via the mitochondrial electron-transport chain

Author:

CHANG Se-Ho1,GARCIA Jairo1,MELENDEZ J. Andres2,KILBERG Michael S.3,AGARWAL Anupam12

Affiliation:

1. Division of Nephrology, Hypertension & Transplantation, Department of Medicine, University of Florida, Box 100224 JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, U.S.A.

2. Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, U.S.A.

3. Department of Biochemistry and Molecular Biology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, U.S.A.

Abstract

Glucose depletion results in cellular stress and reactive oxygen species (ROS) production, which evokes adaptive and protective responses. One such protective response is the induction of haem oxygenase 1 (HO-1), which catalyses the rate-limiting step in haem degradation, liberating iron, CO and biliverdin. The present study evaluated the role of ROS and the mitochondrial electron-transport chain in the induction of HO-1 by glucose deprivation in HepG2 hepatoma cells. Either N-acetylcysteine, an antioxidant, or deferoxamine, an iron chelator, resulted in a dose-dependent inhibition of HO-1 mRNA and protein induction during glucose deprivation, suggesting a redox- and iron-dependent mechanism. Inhibitors of electron-transport chain complex III, antimycin A and myxothiazol, the ATP synthase inhibitor oligomycin and ATP depletion with 2-deoxyglucose or glucosamine also blocked HO-1 induction. To address the involvement of ROS further, specifically H2O2, we showed that overexpression of catalase completely blocked HO-1 activation by glucose deprivation. In contrast, inhibition of nuclear factor κB, mitogen-activated protein kinase (MAPK), protein kinase A, protein kinase C, phosphoinositide 3-kinase, cyclo-oxygenase or cytosolic phospholipase A2, did not prevent HO-1 induction. These results demonstrate that activation of the HO-1 gene by glucose deprivation is mediated by a ‘glucose metabolic response’ pathway via generation of ROS and that the pathway requires a functional electron-transport chain.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3