Roles of interstitial fluid pH and weak organic acids in development and amelioration of insulin resistance

Author:

Marunaka Yoshinori1234ORCID

Affiliation:

1. Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan

2. Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan

3. Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan

4. International Research Center for Food Nutrition and Safety, College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Type 2 diabetes mellitus (T2DM) is one of the most common lifestyle-related diseases (metabolic disorders) due to hyperphagia and/or hypokinesia. Hyperglycemia is the most well-known symptom occurring in T2DM patients. Insulin resistance is also one of the most important symptoms, however, it is still unclear how insulin resistance develops in T2DM. Detailed understanding of the pathogenesis primarily causing insulin resistance is essential for developing new therapies for T2DM. Insulin receptors are located at the plasma membrane of the insulin-targeted cells such as myocytes, adipocytes, etc., and insulin binds to the extracellular site of its receptor facing the interstitial fluid. Thus, changes in interstitial fluid microenvironments, specially pH, affect the insulin-binding affinity to its receptor. The most well-known clinical condition regarding pH is systemic acidosis (arterial blood pH < 7.35) frequently observed in severe T2DM associated with insulin resistance. Because the insulin-binding site of its receptor faces the interstitial fluid, we should recognize the interstitial fluid pH value, one of the most important factors influencing the insulin-binding affinity. It is notable that the interstitial fluid pH is unstable compared with the arterial blood pH even under conditions that the arterial blood pH stays within the normal range, 7.35–7.45. This review article introduces molecular mechanisms on unstable interstitial fluid pH value influencing the insulin action via changes in insulin-binding affinity and ameliorating actions of weak organic acids on insulin resistance via their characteristics as bases after absorption into the body even with sour taste at the tongue.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3