Oct-1 interacts with conserved motifs in the human thyroid transcription factor 1 gene minimal promoter

Author:

BINGLE Colin D1,GOWAN Sharon1

Affiliation:

1. Department of Toxicology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Dominion House, 59 Bartholomew Close, London EC1A 7ED, U.K.

Abstract

The homeodomain containing thyroid transcription factor 1 (TTF-1) is a lung- and thyroid-enriched protein implicated in the regulation of a number of pulmonary specific genes. Within the lung TTF-1 is expressed within the epithelial cells. Although the molecular mechanisms that govern this tight cell-type-specific distribution are unclear, transient transfection studies have suggested that tissue specificity is conferred in part by regions of the proximal promoter. Further studies have shown that two functionally important regions (BS1 and BS2) are sites for activation of the TTF-1 gene by the homeodomain protein HoxB3, raising the possibility that Hox proteins might function in the regulation of TTF-1 in vivo. The different cellular distributions of the two proteins within the lung suggest, however, that proteins distinct from HoxB3 might be the mediators of expression through these sites. In the present study we have used gel-mobility-shift experiments to show that in a pulmonary adenocarcinoma cell line (NCI-H441) that expresses TTF-1, the same single protein binds to both of these sites. The binding of this protein is competed for specifically by the addition of oligonucleotides containing a range of octamer-binding sites but not by a variety of non-related binding sites. Using specific antiserum we have identified this protein as being the ubiquitously expressed POU-domain protein Oct-1. Reverse transcriptase-PCR performed with degenerated primers suggests that Oct-1 is the major POU-domain-containing protein expressed in H441 cells. These results suggest that BS1 and BS2 are functional octamer sites and might therefore be implicated in the basal rather than the tissue-restricted expression of the TTF-1 gene.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3