Early response gene signalling in bryostatin-stimulated primary B chronic lymphocytic leukaemia cells in vitro

Author:

NING Zhi-Qiang1,HIROSE Tohru2,DEED Richard2,NEWTON Joshua1,MURPHY John J.1,NORTON John D.2

Affiliation:

1. Infection and Immunity Research Group, Division of Life Sciences, King's College London, Campden Hill Road, London W8 7AH, U.K.

2. CRC Department of Gene Regulation, Paterson Institute for Cancer Research Christie Hospital (NHS) Trust, Wilmslow Road, Manchester, M20 9BX, U.K.

Abstract

The protein kinase C activator bryostatin induces differentiation and antagonizes the effects of tumour-promoting phorbol esters in a number of different cell types. We show here that bryostatin preferentially inhibits phorbol 12-myristate 13-acetate (PMA)-induced proliferation compared with differentiation in a number of different B chronic lymphocytic leukaemia (BCLL) cell populations examined. By using a panel of 11 early-response gene probes in Northern hybridization analysis, we found that the profile of genes induced in response to bryostatin and PMA was qualitatively similar and displayed comparable sensitivities to inhibition with the serine-threonine kinase inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine hydrochloride (H7), consistent with common signalling through protein kinase C. However, the nuclear oncogene, c-myc, which was induced strongly in response to PMA treatment, was only marginally up-regulated by bryostatin. In addition, bryostatin selectively inhibited the magnitude of PMA-responsive induction of c-myc, to a degree commensurate with its antagonistic effects seen at the biological level. Finally, an anti-sense oligonucleotide blockade of c-myc inhibited PMA-induced proliferation but not the differentiation of BCLL cells, implicating this nuclear oncogene as an important determinant distinguishing PMA from bryostatin-coupled biological responses and also as a candidate third-messenger effector target for the anti-tumour effects of bryostatin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3