Reversible association of half-molecules of ovotransferrin in solution. Basis of co-operative binding to reticulocytes

Author:

Brown-Mason A1,Brown S A1,Butcher N D1,Woodworth R C1

Affiliation:

1. Department of Biochemistry, University of Vermont College of Medicine, Burlington 05405.

Abstract

In the present paper, gel-filtration studies of diferric-ovotransferrin (Fe2OTf), the individual half-molecules of ovotransferrin (OTf) and equimolar mixtures of half-molecules have been interpreted according to the Gilbert theory as developed by Ackers & Thompson [(1965) Proc. Natl. Acad. Sci. U.S.A. 53, 342-349]. The data indicate that the half-molecules associate reversibly in solution and allow determination of a dissociation constant, Kd' = 8.0 (+/- 2.7) microM. Equilibrium binding studies have been performed using NH4Cl to block removal of iron from equimolar differentially iodine-labelled half-molecules (125I and 131I), in order to evaluate the binding of each to chick-embryo red blood cells under identical conditions. The amount of associated half-molecules over a range of concentrations has been calculated using the constant derived from the gel-filtration experiments described above. A computerized non-linear least-squares regression analysis of the data leads to determination of Kd* (the apparent dissociation constant for the interaction between OTf or half-molecules and the transferrin (Tf) receptors of chick-embryo red blood cells) and Bmax (binding at infinite free-ligand concentration) for the half-molecules similar to those found for Fe2OTf. Recent reports confirm that the two iron-binding domains of both OTf and human lactotransferrin associate non-covalently in solution. Our work shows that the isolated half-molecules of OTf are able to reassociate in solution and that this reassociation has functional significance by allowing the complex to be recognized by the Tf receptor.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3