Affiliation:
1. Department of Physiology, University College London, University Street, London WC1E 6JJ, U.K.
Abstract
We have measured the time course of secretion of hexosaminidase from rat mast cells permeabilized (in simple buffered NaCl solutions) in response to guanine nucleotides [GTP or guanosine 5′-[gamma-thio]triphosphate (GTP[S])] and Ca2+. In these experiments, ATP was excluded from the system (and the cells were pretreated with metabolic inhibitors). For cells permeabilized in the absence of Mg2+ but in the presence of Ca2+, secretion commences promptly in response to addition of GTP; when Mg2+ (2 mM) is provided, secretion commences after an extended delay, much higher concentrations of GTP are required, and the final extent of secretion is decreased. Ongoing secretion due to GTP and Ca2+ is abruptly terminated by addition of Mg2+ to cells initially stimulated in its absence. In contrast, although Mg2+ has no effect on the sensitivity to the non-hydrolysable analogue GTP[S], its absence does nevertheless cause delays in the onset of secretion triggered by the addition of GTP[S] to cells initially permeabilized in the presence of Ca2+ (micromolar range, again in the absence of ATP). However, exocytosis from cells triggered with Ca2+ after permeabilization in the presence of high concentrations of GTP[S] is instantaneous. The delays due to triggering by GTP[S] have GTP[S]-concentration-dependent and -independent components. The guanine-nucleotide-concentration-dependent component is expressed as an extended duration of delay as the concentration of GTP[S] is decreased, and may reflect the binding of GTP[S] to GE. The concentration-independent component is manifested as a limiting delay which cannot be further diminished by increasing the guanine nucleotide concentration. The duration of the limiting delay is sensitive to the identity of the stimulating nucleotide (GTP < GTP[S] < p[NH]ppG) and may reflect the time taken for an activating conformational change to occur after binding. Since both components of the delays are abolished by the presence of Mg2+, both the binding of guanine nucleotide and the activation of GE appear to be Mg(2+)-dependent. We therefore conclude that nucleotide binding, activation and the GTPase activity of GE are strongly dependent on Mg2+, in common with the same three processes in Gs and Gi.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献