Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential

Author:

Hanke Mark L.1,Kielian Tammy1

Affiliation:

1. Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A.

Abstract

The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve tailored therapy.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 411 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3