Differential regulation of the retinoblastoma family of proteins during cell proliferation and differentiation

Author:

GARRIGA Judit1,LIMÓN Ana1,MAYOL Xavier1,RANE Sushil G.1,ALBRECHT Jeffrey H.2,REDDY E. Premkumar1,ANDRÉS Vicente3,GRAÑA Xavier1

Affiliation:

1. Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, U.S.A.

2. Department of Medicine, Hennepin County Medical Center, 701 Park Avenue, Minneapolis, MN 55415, U.S.A.

3. Division of Cardiovascular Research, St. Elizabeth's Medical Center, 736 Cambridge Street, Boston, MA 02135, U.S.A.

Abstract

In the present study we have analysed the regulation of pocket protein expression and post-transcriptional modifications on cell proliferation and differentiation, both in vivo and in vitro. There are marked changes in pocket protein levels during these transitions, the most striking differences being observed between p130 and p107. The mechanisms responsible for regulating pocket protein levels seem to be dependent on both cell type and pocket protein, in addition to their dependence on the cell growth status. Changes in retinoblastoma protein and p107 levels are independent of their state of phosphorylation. However, whereas p130 phosphorylation to forms characteristic of quiescent/differentiated cells results in the accumulation of p130 protein, phosphorylation of p130 to one or more forms characteristic of cycling cells is accompanied by down-regulation of its protein levels. We also show here that the phosphorylation status and protein levels of p130 and p107 are regulated in vivo as in cultured cells. In vivo, changes in p130 forms are correlated with changes in E2F complexes. Moreover, the modulation of p130 and p107 status during cell differentiation in vitro is consistent with the patterns of protein expression and phosphorylation status found in mouse tissues. Thus in addition to the direct disruption of pocket protein/E2F complexes induced by cyclin/cyclin-dependent kinase, the results we report here indicate that the differential modulation of pocket protein levels constitutes a major mechanism that regulates the pool of each pocket protein that is accessible to E2F and/or other transcription factors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3