Molecular cloning and biochemical characterization of sialidases from zebrafish (Danio rerio)

Author:

Manzoni Marta1,Colombi Paolo1,Papini Nadia2,Rubaga Luana1,Tiso Natascia3,Preti Augusto1,Venerando Bruno2,Tettamanti Guido2,Bresciani Roberto1,Argenton Francesco3,Borsani Giuseppe1,Monti Eugenio1

Affiliation:

1. Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy

2. Department of Medical Chemistry, Biochemistry and Biotechnology, L.I.T.A. (Laboratorio Interdisciplinare di Tecnologie Avanzate)-Segrate, School of Medicine, University of Milano, via Fratelli Cervi 93, 20090 Segrate, Italy

3. Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy

Abstract

Sialidases remove sialic acid residues from various sialo-derivatives. To gain further insights into the biological roles of sialidases in vertebrates, we exploited zebrafish (Danio rerio) as an animal model. A zebrafish transcriptome- and genome-wide search using the sequences of the human NEU polypeptides as templates revealed the presence of seven different genes related to human sialidases. neu1 and neu4 are the putative orthologues of the mammalian sialidases NEU1 and NEU4 respectively. Interestingly, the remaining genes are organized in clusters located on chromosome 21 and are all more closely related to mammalian sialidase NEU3. They were thus named neu3.1, neu3.2, neu3.3, neu3.4 and neu3.5. Using RT–PCR (reverse transcription–PCR) we detected transcripts for all genes, apart from neu3.4, and whole-mount in situ hybridization experiments show a localized expression pattern in gut and lens for neu3.1 and neu4 respectively. Transfection experiments in COS7 (monkey kidney) cells demonstrate that Neu3.1, Neu3.2, Neu3.3 and Neu4 zebrafish proteins are sialidase enzymes. Neu3.1, Neu3.3 and Neu4 are membrane-associated and show a very acidic pH optimum below 3.0, whereas Neu3.2 is a soluble sialidase with a pH optimum of 5.6. These results were further confirmed by subcellular localization studies carried out using immunofluorescence. Moreover, expression in COS7 cells of these novel zebrafish sialidases (with the exception of Neu3.2) induces a significant modification of the ganglioside pattern, consistent with the results obtained with membrane-associated mammalian sialidases. Overall, the redundancy of sialidases together with their expression profile and their activity exerted on gangliosides of living cells indicate the biological relevance of this class of enzymes in zebrafish.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference47 articles.

1. Biochemistry and function of sialidases;Saito,1995

2. Recent development in mammalian sialidase molecular biology;Monti;Neurochem. Res.,2002

3. Galactosialidosis;d'Azzo,2001

4. Involvement of an endogenous sialidase in skeletal muscle cell differentiation;Sato;Biochem. Biophys. Res. Commun.,1996

5. Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431;Meuillet;Cancer Res.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3