Affiliation:
1. Department of Chemical Hygiene, Hokkaido Institute of Pharmaceutical Sciences, Otaru, 047-02, Japan
Abstract
A microsomal deacetylase that catalyses the deacetylation of the O-glucoside of N-hydroxyacetanilide (GHA) was purified from guinea-pig liver. The activity was located exclusively in the microsomes and not detected in the cytosol. The purified GHA deacetylase was a trimeric protein with a molecular mass of 160±10 (S.D.) kDa composed of subunits of 53±2 kDa; its pI was 4.7. The N-terminal amino acid sequence of GHA deacetylase was similar to those reported for guinea-pig and rat liver microsomal carboxylesterases. The GHA deacetylase showed a comparable hydrolytic activity towards p-nitrophenyl acetate (PNPA), although the activities towards N-hydroxyacetanilide, acetanilide and some endogenous acylated compounds were very low or not detectable. The deacetylase activity towards GHA was inhibited by organophosphates but not by p-chloromercuribenzoate, suggesting that GHA deacetylase can be classified as a B-esterase. The enzyme exhibited a positive homotropic co-operativity towards GHA. The values of the Hill coefficient, the half-saturating concentration ([S]0.5) for GHA, and Vmax were 1.59±0.03, 5.51±0.07 mM and 32.5±1.4 μmol/min per mg respectively, at the optimum pH of 8.5. The bell-shaped pH dependence of the Vmax/[S]0.5 profile indicated pKa values attributed to histidine and lysine residues. The study of stoichiometric inhibition by di-isopropyl fluorophosphate and kinetic analysis with the Monod–Wyman–Changeux model suggests that GHA deacetylase has six substrate binding sites and three catalytically essential serine residues per enzyme molecule.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献